
What You See is What You Grasp: User-friendly Grasping
Guided by Near-eye-tracking

Shaochen Wang∗, Wei Zhang∗, Zhangli Zhou∗, Jiaxi Cao, Ziyang Chen, Kang Chen, Bin Li, Zhen Kan

Abstract— This study introduces an advanced human-robot
interface designed to discern and execute manipulation tasks
based solely on visual cues. The interface combines eye-tracking
technology and robotic manipulation, facilitating actions like
grasping or pick-and-place tasks. We have developed a head-
mounted device for tracking eye movements, allowing the
system to determine the user’s focus and initiate sight-driven
manipulation. Enhancing grasping efficiency, the system incor-
porates a transformer-based model, utilizing attention blocks
for feature extraction and optimizing both channel capacity and
spatial resolution of the feature maps. Our experiments confirm
the system’s capability in aiding users to perform tasks using
only their gaze, suggesting significant implications for assistive
robots in helping people with upper limb disabilities or the
elderly with everyday activities.

I. INTRODUCTION

Modern advancements in artificial intelligence have cat-
alyzed the extensive integration of robots [1]–[3] into nu-
merous sectors, encompassing both industrial operations and
routine daily activities. These systems are evolving beyond
basic, repetitive functions, incorporating the ability to in-
terpret human intentions for enhanced user assistance. This
development highlights the necessity of creating interfaces
that effectively convey human intentions to robots, thereby
fostering a more integrated human-machine interaction [4].

Conventional manipulation techniques [5], [6], often re-
liant on joysticks, pose challenges for the elderly and those
with upper limb disabilities. While recent strides in wearable
technology, particularly brain-computer interfaces (BCI) [7],
show promise in robotic assistance, they have limitations.
Invasive BCI systems, requiring surgical implantation of
microelectrodes in the cerebral cortex, carry inherent risks.
Additionally, non-invasive BCIs are prone to noise interfer-
ence and often come with high costs. Consequently, there
is an urgent need for developing a new, both safe and user-
friendly, human-robot interface.

Vision is the primary sensory input for humans, with over
80% of information obtained through it. This fact drives
the advancement of eye-based robotic assistive systems for
manipulation tasks. Incorporating eye-tracking technology,
these systems show promise in diverse fields such as surgi-
cal diagnostics, rehabilitation, and research. They serve as
an instinctive interface for those with physical disabilities,
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given that such conditions seldom impact vision. Despite
these advantages, the widespread adoption of eye-tracking in
practical applications remains limited. This is primarily due
to challenges in precisely modeling eye motion to accurately
determine gaze points. Most current eye-tracking robotic
systems [8] use stationary cameras and are designed for
desktop environments, limiting their broader applicability.

This study presents an innovative human-robot interface
capable of interpreting and executing manipulation tasks
based solely on visual input. Our integrated system com-
bines near-eye tracking with robotic manipulation, facili-
tating user-directed actions such as grasping and pick-and-
place activities. Our design is a head-mounted gadget that
precisely monitors real-time eye movements to pinpoint
the user’s focus. Additionally, our transformer-based grasp
detection framework enhances the robot’s ability to perceive
and execute user-directed manipulations. This framework
employs self-attention to understand spatial relationships
among pixels and a feature fusion pyramid to amalgamate
multi-scale features for accurate grasping pose determination.
Experimental results show low error rates in gaze estimation
and high performance in various grasping tasks with our
system.

The contribution of this work can be summarized as
follows:

• We’ve developed a user-specific visual robotic aid,
featuring a head-mounted intent detection system and a
self-attention enhanced grasping tool for manipulative
tasks.

• Introduction of an innovative human-robot interface that
facilitates intuitive manipulation solely through eye-
tracking technology.

• Comprehensive experimental validation confirming the
efficiency of our robotic assistive system in various
manipulation scenarios.

II. RELATED WORK

Robotic manipulation [9], [10] is a critical skill with
applications spanning manufacturing, industry, and medicine.
[11] addresses grasping’s non-stationary dynamics to en-
hance success in grasp maneuvers. Concurrently, there is
an increasing merger of reinforcement learning [12], [13]
with robotics. Extensive research has focused on vision-
based grasping methods. Pioneering this field, deep learning
for grasp detection was first introduced by Lenz et al.
[14]. Redmon et al. [15] later utilized a CNN for robotic
grasp pose determination. Additionally, Morrison et al. [16]
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developed a generative grasping CNN that uses depth data
to generate grasp candidates.

Assistive robotic arms, aiding users with upper limb
impairments in everyday tasks like object grasping and water
pouring, are gaining popularity. Traditional control methods,
such as joysticks, present challenges for elderly or upper limb
disabled individuals. Conversely, visual interaction offers a
more intuitive approach for those with physical, mobility, or
speech impairments to operate robotic systems. Eye-tracking
technology, evolving considerably over the past century,
now enables manipulation of robotic devices through gaze
tracking.

The concept of the attention mechanism draws inspiration
from human visual perception, highlighting the significance
of sight in directing attention. Hollenstein et al. [17] en-
hanced an annotation model by incorporating human sight,
demonstrating its effectiveness in conveying semantic in-
formation for entity models. Similarly, in computer vision,
Karessli et al. [18] utilized sight as an auxiliary task,
notably improving zero-shot task classification accuracy.
Eye-tracking technology’s application extends to augmented
reality [19], deep learning [20], [21], and mixed reality [22].
These advancements serve as a foundation for our research
in employing sight for human-robot manipulation.

III. METHOD

A. System Overview

This section outlines the integration of near-eye track-
ing with robotic manipulation for enhanced human-robot
interaction. The system utilizes a head-mounted eye-tracking
device, enabling users to control a robotic arm for object
manipulation using their sight. Fig. 1 depicts the process
of interpreting human eye gaze into robotic actions. The
methodology comprises three key steps: i) Utilizing a head-
mounted near eye-tracker equipped with economical cameras
to track the people’s gaze. Combining a biological represen-
tation of the human eye using computer vision techniques,
this procedure identifies the orientation of the pupil and
precisely locates the gaze coordinates within the three-
dimensional space. ii) Concurrently, an advanced hierarchical
transformer-based visual model has been devised to enhance
feature extraction during grasping tasks by harnessing the
power of attention for global perception. A feature pyramid
within the transformer network assimilates multi-scale sen-
sory data, culminating in an optimal grasping configuration.
iii) These subsystems merge their data, utilizing a grasping
quality maps to process the gaze point and human attention,
ultimately deriving the grasping pose configurations for the
intended object.

B. Eye-tracking System

As a sophisticated optical organ, human eyes generate
images on the retina through complex reflection, utilizing
its refractive elements (cornea, lens and vitreous humor).
These elements, each with a distinct refractive index, create
varied refractive surfaces, thus enhancing the complexity of
the optical system. For modeling purposes, corneal refraction

:

Semantic information fusion

Robot visual scene User visual scene

Grasp detection Real-time eye tracking

User’s gaze point Filtered depth image

Robotic arm path planning and grasping

Grasped object position 

Fig. 1. System Pipeline Overview: The subsystem dedicated to detecting
grasps is denoted by the pink section, while the module for eye-tracker
is represented in green. The fusion module, highlighted in yellow at the
bottom, is where objects are chosen for grasping based on user gaze.

during pupil imaging is typically simplified, treating the
cornea as a uniformly curved sphere. Our approach adopts
the model from Nagamatsu et al. [23], which conceptualizes
the eye using two concentric ellipsoids - a larger one for the
ocular body and a smaller, rotatable ellipsoidal plane for the
cornea. The pupil serves as the primary light entry channel,
with its orientation reflecting the eyeball’s rotation and the
gaze direction. Central pupil coordinates are essential for ac-
curate sight tracking. Our methodology for locating the pupil
center comprises two phases: coarse and refined localization.
The initial phase applies radial symmetry transformations for
rapid pupil identification, excluding anomalies like blink-
induced distortions. Following this, we apply Canny edge
detection, along with edge filtering, to accurately pinpoint
the center of the pupil with refined localization.

Based on the pupil center coordinates obtained through
eye image processing and rooted in the principles of camera
imaging theory [24], the positioning of pupil centers is
determined by the following equation: up
vp
1

 =
1

Pz
A

 Px
Py
Pz

 =
1

Pz

 fx 0 cx
0 fy cy
0 0 1

 Px
Py
Pz

 .
(1)

In near-eye image analysis, the estimated gaze location
is represented as [up, vp], while in the world coordinate
framework, it’s denoted as [Px, Py, 1]. The transformation
matrix Pz and the camera’s intrinsic matrix A, compatible
with OpenCV [25], facilitate this coordinate translation. For
simplicity, the image plane-camera distance is typically set
to 1, which succinctly defines the pupil’s 3D coordinates,
leading to the following expression for the pupil’s 3D coor-
dinates:  Px

Py
Pz

 =

 Px
Py
1

 =


up−cx
fx

up−cy
fy

1

 . (2)

In a similar fashion, the central point of the corneal reflection
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Fig. 2. Illustration of the near-eye-tracking.

is located using 3D coordinates. Vectors p1 and p2 are
derived from the line of sight joining the center of the
camera’s lens to the centers of the pupils, while vectors
g1 and g2 originate from the line connecting the camera’s
center to the corneal reflection’s center. Given the ocular
optic axis, the corneal reflection, and the camera center all
lie in the same plane, the corresponding normal vectors of
these planes, depicted in Fig. 2, are computed as{

n1 = p1×g1

|p1×g1| , n2 = p2×g2

|p2×g2| . (3)

The optical axis of the eye, found at the intersection of these
planes, is ascertained through the normalized cross product
n1×n2

|n1×n2| , which allows for the precise derivation of the axis’
coordinates.

The head-mounted near-eye assistance device, illustrated
in Fig. 5, integrates compact eye cameras for acquiring high-
definition images close to the eye. As depicted in Fig. 2, for
each eye, dual sight lines are constructed to detect the corneal
reflection and to ascertain the spherical center of the cornea
and its 3D optical axis.

Using a spherical cornea model and near-eye cameras,
this system captures user-viewpoint images with a scene
camera. It determines corneal center, aligns the sight line
by detecting the pupil’s center, and deduces sight direction
from the pupil’s 3D coordinates connected to the corneal
center, based on geometric eye principles [23].

C. Grasp Detection

Grasp detection, in contrast to standard object detec-
tion, predominantly utilizes smaller rectangles and exhibits
heightened sensitivity to spatial positioning and rotational
orientations. To facilitate a comprehensive interpretation of
this model, this study employs a hierarchy of transformer
layers, instead of conventional convolutional kernels with
static receptive fields. These layers serve as the primary

Fig. 3. Overview of Transformer-Based Grasp Detection Model.

structure for progressively distilling features from coarse to
fine granularity. Fig. 3 illustrates that the initial image I,
existing in the space RW×H , where W and H denote its
width and height, undergoes an initial division into unique,
non-overlapping segments through a convolutional projection
layer. In this context, each image patch is analogous to
a word token. Echoing the approach in [26], the model
incorporates four sequential stages for the extraction of
semantically enriched features. Every phase includes both
a layer for merging patches and a swin transformer layer.
The process of patch merging mirrors the pooling func-
tion in CNNs, aiming to diminish image resolution while
concurrently amplifying feature channel depth. Fig. 3 also
details the feature dimensions at each stage. At the heart
of the swin transformer layer lies the attention mechanisms,
which linearly transforms input features to produce query,
key, and value elements. This leads to the computation of
self-attention as detailed subsequently:

Attention(Q,K, V ) = SoftMax(
QKT

√
d

)V, (4)

where
√
d acts as the scaling factor. Self-attention in the swin

transformer layer is confined to a localized window, signifi-
cantly reducing computational requirements. Additionally, it
utilizes a shifted window technique to encapsulate global
interconnections. The computational sequence within the
Swin Transformer framework is mathematically articulated
as follows:

ûl = W-MSA
(
LN
(
ul−1

))
+ ul−1,

ul = MLP
(
LN
(
ûl
))

+ ûl,

ûl+1 = SW-MSA
(
LN
(
ul
))

+ ul,

ul+1 = MLP
(
LN
(
ûl+1

))
+ ûl+1.

(5)

In this sequence, the feature ul−1, derived from the preceding
layer, is initially processed through a layer normalization
(LN) procedure and subsequently engaged in the W-MSA
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(a) Visual attention (b) Gazed-based physical grasping

Fig. 4. (a) illustrates the visual representation of scene images and corresponding human attention as captured by our method. The images, in sequence
from left to right, highlight human gaze fixation on a blue bottle, eyeglass box, banana, and apple. (b) describes an experimental setup for real-time grasping
based on human gaze tracking.

(Window Multi-Head Self Attention). This is followed by the
inclusion of a residual connection between each of the mod-
ules. The process is then replicated in the SW-MSA (Shifted
Window Multi-Head Self Attention) layer. The employment
of the Swin Transformer as the backbone network is primar-
ily driven by its capacity to simultaneously accommodate
global and local perceptual abilities. This architecture also
presents a reduction in computational complexity, especially
in comparison to the conventional self-attention mechanism.

In the proposed model, illustrated at the base of Fig.
3, a feature fusion pyramid is strategically implemented
to amalgamate features derived from each layer within the
backbone network. This pyramid structure facilitates a multi-
scale integration of features, thereby enriching the contex-
tual information encompassing both semantic and spatial
aspects. The fusion module within this architecture employs
a concatenation strategy to merge these diverse features.
Through 1×1 convolutional kernels, the network yields three
unique outputs: grasping quality, width, and angle heads,
each maintaining the original input image’s dimensional size.

The grasping quality head assigns a success probability
from 0 to 1 for each point, reflecting the grasp’s likelihood
at that image location. For grasping angles, two components,
cos2θ and sin2θ, are used, with the angle calculated as
1
2arctan

cos2θ
sin2θ . The network then locates the highest quality

grasp point within the quality head’s outputs, determining it
as the grasp center and identifying the corresponding gripper
rotation angle and width.

The model’s loss function, L, is defined as L =
w1Lpose + w2Langle + w3Lwidth, where Li denotes the
mean square error between predicted and ground truth values
for each loss component. Weight factors w1, w2, and w3

adjust each component’s impact. For instance, the pose loss
Lpose is calculated as

∑N
i=1 |G̃i −G∗i |2, with G̃i being the

grasp quality head’s output and G∗i its ground truth.

IV. EXPERIMENT

A. Dataset and Model Implementation Specifications

For the purpose of assessing our grasp detection model’s
performance, we utilize the Cornell Grasping Dataset [14].
This dataset comprises images, each uniformly cropped to a
dimension of 224×224. The complete grasp detection model

Fig. 5. Development of the Head-Mounted Eye-Tracking Device.

has been developed using the PyTorch framework. The model
training is conducted with a batch size of 32, employing the
AdamW optimizer. The learning rate for this process is set
at 1e-4.

Evaluation Criteria. Consistent with the evaluation
benchmarks established in [14], [27], [28], we adopt the
grasping rectangle metric to quantify the effectiveness of
the grasping predictions. Accuracy in a predicted grasp is
determined by meeting two key criteria:

i) The rotational angle deviation between the predicted
grasp and the ground truth is limited to a maximum of 30◦.

ii) The predicted grasp’s Jaccard index, in comparison to
the ground truth, is over 0.25. The Jaccard index is delineated
as:

J (R,R) = |R ∩ R|
|R ∪R|

, (6)

In this equation, R represents the region of the predicted
grasping rectangle, while R denotes the ground truth region.
The terms R ∩ R and R ∪ R refer to the intersection and
union of these regions, respectively.

B. Grasping Performance Analysis

Utilizing inverse kinematics, the robot accurately for-
mulates the grasping trajectory based on defined coor-
dinates. Our methodology is rigorously evaluated against
contemporary approaches, as delineated in Table II using
the Cornell Grasping Dataset. Despite the relatively nar-
row performance differentials among leading-edge models,
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TABLE I
SUCCESS RATES IN EXPERIMENTAL ROBOTIC GRASPING FOR VARIOUS OBJECTS.

Category Object Detected / Total Grasp % Object Grasp %
Seen Objects Mouse 15 / 15 13 / 15 (87%) Remote Control 13 / 15 (87%)

Apple 14 / 15 12 / 15 (80%) Pencil 13 / 15 (87%)
Familiar Objects Orange 14 / 15 12 / 15 (80%) Knife 11 / 15 (73%)

Staples Box 15 / 15 12 / 15 (80%) Screwdriver 14 / 15 (93%)
Unseen Objects Scissor 12 / 15 11 / 15 (73%) Toothpaste Box 12 / 15 (80%)

Razor 13 / 15 11 / 15 (73%) Toy 9 / 15 (60%)

TABLE II
THE ACCURACY ON CORNELL GRASPING DATASET.

Authors Approach Accuracy (%)
Jiang [29] Fast Search 60.5
Asif [30] GraspNet 90.2
Redmon [15] AlexNet, MultiGrasp 88.0
Guo [31] ZF-net 93.2
Asif [32] STEM-CaRFs 88.2
Wang [28] Two-stage closed-loop 85.3
Kumra [27] ResNet-50x2 89.2
Morrison [16] GG-CNN 73.0
Lenz [14] SAE, struct. reg. 73.9
Zhou [33] FCGN, ResNet-101 97.7
Karaoguz [34] GRPN 88.7

GraspFormer-D 96.28
Our GraspFormer-RGB 97.72

GraspFormer-RGB-D 98.86

our approach demonstrates superior results. Specifically, our
transformer-based model for grasp detection exhibits an
accuracy of 96.28% when solely employing depth images,
and an elevated accuracy of 98.86% with RGB-D input.
A notable aspect of our model is its capability to directly
ascertain the quality, angle, and width of the grasping rectan-
gles. This feature significantly reduces the need for designing
specific anchors for varying targets, streamlining the grasp
detection process.

To assess our model’s generalizability to new environ-
ments, objects were rearranged in varied positions and ori-
entations, and categorized into three groups: those in the
dataset, similar to those in the dataset, and entirely new. Each
group contained a minimum of four objects. These objects
underwent multiple grasping trials, with successful attempts
being recorded. The results, detailed in Table I, indicate
strong performance for known objects, effective generaliza-
tion for similar objects, and notable accuracy improvements
in grasping unseen objects in complex scenes.

C. Design of the Integrated System

Our system integrates two core modules: an eye-tracking
unit and a grasping mechanism. Experiments are conducted
using a Franka Emika Panda robot, equipped with a Re-
alSense D435i RGB-D camera attached to its gripper. The
camera’s depth images undergo preprocessing as outlined in
[35]. The Panda robot features a parallel-finger gripper with
a 10 cm operational range and a maximum load capacity of 3
kg. This eye-tracking setup features four infrared-illuminated
eye cameras and a scene camera, all mounted on a head
frame. The under-eye cameras capture detailed images, using

Fig. 6. Eye images captured by cameras positioned near the eye..

near-infrared light for precise 3D eye modeling based on
corneal reflections.

D. System Limitations

The system faces challenges due to complexities in eye-
tracking and grasping. For eye-tracking, accurately determin-
ing pupil center coordinates is difficult due to factors like
corneal refraction and asphericity, which introduce hard-to-
calibrate variables. To address this, our module employs a
simplified eye model, disregarding corneal refraction and
assuming a spherical corneal surface, although in reality,
the curvature varies across the eye’s surface. These approx-
imations may result in gaze estimation inaccuracies. In the
grasping subsystem, limitations arise while handling trans-
parent objects, as the RealSense camera’s depth perception
for such materials is inadequate. Experiments indicate that
objects with complex or smooth surfaces tend to slip from
the grippers, highlighting a need for improvement in handling
diverse object textures and shapes.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This study introduces a novel contactless human-robot
interface, facilitating robotic manipulation through visual
cues. Our system incorporates a head-mounted eye-tracker
to pinpoint objects under human observation. Utilizing the
user’s gaze data, the transformer-based grasp model effec-
tively discerns the user’s focus area, capitalizing on its global
perception capabilities. Empirical results indicate that the
developed gaze-directed robotic arm adeptly performs tasks
such as object relocation and precise grasping, guided by
near-eye tracking.
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Further examination through ablation studies confirms the
satisfactory tracking accuracy of our eye-tracking module.
This research lays the groundwork for more intuitive and
efficient human-robot collaboration, presenting potential for
further enhancements in accuracy and versatility in varying
operational contexts.
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